Cybersecurity

Block Ciphers and Lightweight Cryptography

Block cipher

- Break data into fixed-length groups known as blocks
- Process each block sequentially
- Mode of operation
 - Defines method
 - Provides authentication
- Block size does not change
 - Data may not evenly divide into blocks
 - May require padding before encryption
 - Padding = adding "filler" data
 - All zeros or some known, repeating pattern

Electronic Codebook (ECB)

- Most simple encryption mode
- Each block encrypted with same key
 - Identical plaintext creates identical ciphertext

Cipher Block Chaining (CBC)

- Easy to implement, Popular
- Each block is XORed with *previous* ciphertext block
 - Adds additional obfuscation
 - First block does not have previous ciphertext so uses IV (Initialization Vector) as starting value

Counter (CTR)

- Block cipher but acts as stream cipher
 - Encrypts "counter" iterations
- Plaintext can vary in size since it's part of the XOR operation
 - e.g. 16 bits at a time (stream) instead of a 128-bit block

Galois/Counter Mode (GCM)

- Encryption with authentication
 - Authentication (integrity of data) is part of algorithm
 - Combines Counter Mode with authentication
 - Like CTR, block encryption that acts like a stream cipher
- Very efficient
- Commonly used on data packets
 - Network traffic security (wireless, IPSec)
 - SSH, TLS
- Variant known as GMAC
 - <u>Galois Message Authentication Code</u>

Lightweight Cryptography

- Requires low computational complexity
- Not useful on high powered devices
- Useful with international guidelines

